ES 412 Optical Fiber Communication (3-0-0-4) Sem 3, 2019-2020 ## Course plan Duration of course: Tuesday, 21st April 2020 - 7th June 2020 (7 weeks) Lectures: Slot 15:00 – 16:00 on Mon, Wed, Fri Discussion hour: 1 hour at a mutually convenient time slot Evaluation components: Assignments (40), Interview / Quiz (30), Endsem (30) | Week | Date | Topic | Objective / Reading / Activity | |------|----------------|---|---| | 1 | 21 Apr
2020 | Overview of modern communications 1. Information: unpredictable/random 2. Source: laser diode 3. Channel: optical fiber 4. Detector: photodiode 5. Noise: channel & detector | How the optical fiber has revolutionized the way the world is connected. Examine the basic building blocks of a communication system | | | 22 Apr
2020 | The essential mathematics 1. Energy and power of a signal 2. Concept of bandwidth 3. Fourier transform & its properties 4. Linear and nonlinear systems 5. Concept of modes of a system | What mathematical framework will we need for the course? How do you estimate bandwidth? How is energy transmitted through an energy guiding system? | | | 24 Apr
2020 | Modulation – impressing information 1. Analog vs digital modulation 2. Introduction to amplitude modulation and frequency modulation | How is information encoded? Which is a better modulation method? | | 2 | 27 Apr
2020 | Review of EM waves & Optics 1. Maxwell's equations 2. Phase velocity and group velocity 3. Polarization of light 4. Interference of light 5. Polarization of the medium – linear & nonlinear | The wave nature of light. Aspects of the wave nature that are relevant to this course How does the medium respond to the light that propagates? | | | 29 Apr
2020 | The basics of the optical fiber 1. Construction of an optical fiber 2. Mechanism of light guidance | The ray picture of light guidance. How easy is it to get light into a fiber? How is light guided within a fiber? | | | 1 May
2020 | Types of optical fiber 1. Step-index and graded-index 2. Single-mode & multimode fiber | What effect does the construction of the fiber have on its properties? | | 3 | 4 May
2020 | Modes of a planar waveguide 1. Modes of the waveguide 2. Propagation characteristics | How is the energy distributed? Does it matter? | | | 6 May
2020 | Modes of a circular waveguide 1. Step-index waveguide 2. Propagation characteristics | How is the energy distributed in a fiber? | | | 8 May
2020 | Single-mode fibers (SMF) | | | 4 | 11
May
2020 | Dispersion in fibers 1. Waveguide dispersion 2. Material dispersion 3. Modal dispersion | Why can we not transmit at arbitrarily high data rates? What limits data rate? | |-------|-------------------|---|---| | | 13
May
2020 | Losses in fibers 1. Absorption & bend loss 2. Scattering loss | How can losses be minimized and the range be maximized? | | | 15
May
2020 | Power launching in fibers | | | 5 | 18
May
2020 | Modulation of light 1. Electro-optic phase modulation 2. Electro-optic intensity modulation | Impressing information on a carrier wave | | | 20
May
2020 | Semiconductors & pn junctions Electrons and holes – conduction band and valence band The E-k diagram – origin and implication Electro-luminescence - light emission Photoconductivity – light detection | Why use semiconductors? How do electrons behave in a semiconductor? What is required to make electrons emit light? How is light detected? | | | 22
May
2020 | The laser diode 1. Principle of operation of a laser 2. Important properties – spectrum, power, directionality | The basic principle of a laser | | 6 | 25
May
2020 | Modulation of laser diodes 1. Amplitude modulation 2. Phase modulation | Direct current modulation of laser diodes | | | 27
May
2020 | Detection of light 1. Principle of photodetection 2. Spectral response 3. Speed of response | What precisely does one detect? Can you detect all wavelengths? Can you detect very rapidly changing signals? What decides that? | | | 29
May
2020 | Photodetctors 1. p-i-n photodiode 2. avalanche photodiode (APD) | How is light detection optimized? | | 7 | 1 June
2020 | Optical components 1. Directional couplers 2. Wavelength division multiplexers | How are signals combined, routed, filtered in a network? | | | 3 June
2020 | Optical components contd 1. Spectral filters – fiber Bragg gratings (FBGs) | How do you combine many signals? How do you separate different signals? | | Note: | 5 June
2020 | Summary | | ## Note: - 1. An introductory session regarding the course will be held at 11 am on Monday 20 April 2020. We will use Google Meet for the meeting. Use the code "ee412" to join the meeting. - 2. Instructor's details: Dr Arup Lal Chakraborty, Electrical Engineering, Email: arup@iitgn.ac.in, Tel: +91 7600 6545 76.